English [Wróć do strony głównej]

Publikacje NZ15 (rok: 2022)

Updated: 2022-05-11

Publikacje

  1. V.A. Allakhverdyan, (K.A. Kopański, Pa. Malecki, W. Noga) et al.,
    Technique for suppression of background cascades produced by atmospheric muon bundles in the Baikal-GVD,
    J. Instr., 17 (2022) C02013, doi: 10.1088/1748-0221/17/02/C02013,
    tekst pracy: https://iopscience.iop.org/article/10.1088/1748-0221/17/02/C02013;
  2. V.A. Allakhverdyan, (K.A. Kopański, Pa. Malecki, W. Noga) et al.,
    Automatic data processing for Baikal-GVD neutrino observatory,
    Proc. Science, ICRC2021 (2022) 1040, doi: 10.22323/1.395.1040,
    tekst pracy: https://pos.sissa.it/395/1040/pdf;
  3. V.A. Allakhverdyan, (K.A. Kopański, Pa. Malecki, W. Noga) et al.,
    An efficient hit finding algorithm for Baikal-GVD muon reconstruction,
    Proc. Science, ICRC2021 (2022) 1063, doi: 10.22323/1.395.1063,
    tekst pracy: https://pos.sissa.it/395/1063/pdf;
  4. V.A. Allakhverdyan, (K.A. Kopański, Pa. Malecki, W. Noga) et al.,
    Positioning system for Baikal-GVD,
    Proc. Science, ICRC2021 (2022) 1083, doi: 10.22323/1.395.1083,
    tekst pracy: https://pos.sissa.it/395/1083/pdf;
  5. V.A. Allakhverdyan, (K.A. Kopański, Pa. Malecki, W. Noga) et al.,
    Data Quality Monitoring system of the Baikal-GVD experiment,
    Proc. Science, ICRC2021 (2022) 1094, doi: 10.22323/1.395.1094,
    tekst pracy: https://pos.sissa.it/395/1094/pdf;
  6. V.A. Allakhverdyan, (K.A. Kopański, Pa. Malecki, W. Noga) et al.,
    The Baikal-GVD neutrino telescope as an instrument for studying Baikal water luminescence,
    Proc. Science, ICRC2021 (2022) 1113, doi: 10.22323/1.395.1113,
    tekst pracy: https://pos.sissa.it/395/1113/pdf;
  7. V.A. Allakhverdyan, (K.A. Kopański, Pa. Malecki, W. Noga) et al.,
    Methods for the suppression of background cascades produced along atmospheric muon tracks in the Baikal-GVD,
    Proc. Science, ICRC2021 (2022) 1114, doi: 10.22323/1.395.1114,
    tekst pracy: https://pos.sissa.it/395/1114;
  8. V.A. Allakhverdyan, (K.A. Kopański, Pa. Malecki, W. Noga) et al.,
    The Baikal-GVD neutrino telescope: search for high-energy cascades,
    Proc. Science, ICRC2021 (2022) 1144, doi: 10.22323/1.395.1144,
    tekst pracy: https://pos.sissa.it/395/1144/pdf;
  9. V.A. Allakhverdyan, (K.A. Kopański, Pa. Malecki, W. Noga) et al.,
    Development of the Double Cascade Reconstruction Techniques in the Baikal-GVD Neutrino Telescope,
    Proc. Science, ICRC2021 (2022) 1167, doi: 10.22323/1.395.1167,
    tekst pracy: https://pos.sissa.it/395/1167/pdf;
  10. V.A. Allakhverdyan, (K.A. Kopański, Pa. Malecki, W. Noga) et al.,
    Observations of track-like neutrino events with Baikal-GVD,
    Proc. Science, ICRC2021 (2022) 1177, doi: 10.22323/1.395.1177,
    tekst pracy: https://pos.sissa.it/395/1177/pdf;
  11. V.A. Allakhverdyan, (K.A. Kopański, Pa. Malecki, W. Noga) et al.,
    Multi-messenger and real-time astrophysics with the Baikal-GVD telescope,
    Proc. Science, ICRC2021 (2022) 946, doi: 10.22323/1.395.0946,
    tekst pracy: https://pos.sissa.it/395/946/pdf;
  12. D. Attié, (M. Batkiewicz-Kwaśniak, H. Przybilski, J. Świerblewski) et al.,
    Characterization of resistive Micromegas detectors for the upgrade of the T2K Near Detector Time Projection Chambers,
    Nucl. Instr. Meth. A, 1025 (2022) 166109, doi: 10.1016/j.nima.2021.166109,
    tekst pracy: https://arxiv.org/pdf/2106.12634.pdf;
  13. T. Bister, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    A combined fit of energy spectrum, shower depth distribution and arrival directions to constrain astrophysical models of UHECR sources,
    Proc. Science, ICRC2021 (2022) 368, doi: 10.22323/1.395.0368,
    tekst pracy: https://pos.sissa.it/395/368/pdf;
  14. J. Biteau, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    The ultra-high-energy cosmic-ray sky above 32 EeV viewed from the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 307, doi: 10.22323/1.395.0307,
    tekst pracy: https://pos.sissa.it/395/307/pdf;
  15. A.M. Botti, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Status and performance of the underground muon detector of the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 233, doi: 10.22323/1.395.0233,
    tekst pracy: https://pos.sissa.it/395/233/pdf;
  16. K.S. Caballero Mora, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Outreach activities at the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 1374, doi: 10.22323/1.395.1374,
    tekst pracy: https://pos.sissa.it/395/1374/pdf;
  17. I.A. Caracas, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    A tau scenario application to a search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 1145, doi: 10.22323/1.395.1145,
    tekst pracy: https://pos.sissa.it/395/1145/pdf;
  18. J.M. Carceller, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks,
    Proc. Science, ICRC2021 (2022) 229, doi: 10.22323/1.395.0229,
    tekst pracy: https://pos.sissa.it/395/229/pdf;
  19. G. Cataldi, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    The upgrade of the Pierre Auger Observatory with the Scintillator Surface Detector,
    Proc. Science, ICRC2021 (2022) 251, doi: 10.22323/1.395.0251,
    tekst pracy: https://pos.sissa.it/395/251/pdf;
  20. R. Clay, (P. Homola, A. Bhatt, Go. Bhatta, D.E. Alvarez-Castillo, D. Góra, J. Miszczyk, J. Stasielak, S. Stuglik, O. Sushchov) et al.,
    A Search for Cosmic Ray Bursts at 0.1 PeV with a Small Air Shower Array,
    Symmetry, 14 (2022) 501, doi: 10.3390/sym14030501,
    tekst pracy: https://www.mdpi.com/2073-8994/14/3/501/htm;
  21. R. Colalillo, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Downward Terrestrial Gamma-ray Flashes at the Pierre Auger Observatory?,
    Proc. Science, ICRC2021 (2022) 395, doi: 10.22323/1.395.0395,
    tekst pracy: https://pos.sissa.it/395/395/pdf;
  22. CREDO Collab. (K. Almeida Cheminant, D. Góra, D.E. Alvarez-Castillo, P. Homola, J. Stasielak, O. Sushchov) et al.,
    Event rates of UHE photons cascading in the geomagnetic field at CTA-North,
    Proc. Science, ICRC2021 (2022) 726, doi: 10.22323/1.395.0726,
    tekst pracy: https://pos.sissa.it/395/726/pdf;
  23. CREDO Collab. (N. Dhital, P. Homola, D. Alvarez-Castillo, D. Góra, H. Wilczyński, K. Almeida Cheminant, Ap. Bhatt, G. Bhatta, P. Jagoda, K. Kopański, M. Krupiński, J. Stasielak, O. Sushchov, K. Woźniak) et al.,
    Cosmic ray ensembles as signatures of ultra-high energy photons interacting with the solar magnetic field,
    J. Cosmol. Astropart. Phys., 03 (2022) 038, doi: 10.1088/1475-7516/2022/03/038,
    tekst pracy: https://arxiv.org/pdf/1811.10334.pdf; astor-ph.HE/1811.10334;
  24. CREDO Collab. (P. Homola, D.E. Alvarez-Castillo, J. Stasielak, S. Stuglik, O. Sushchov) et al.,
    Probing UHECR and cosmic ray ensemble scenarios with a global CREDO network,
    Proc. Science, ICRC2021 (2022) 472, doi: 10.22323/1.395.0472,
    tekst pracy: https://pos.sissa.it/395/472/pdf;
  25. CREDO Collab. (R. Kamiński, S. Stuglik, D. Alvarez-Castillo, P. Homola, J. Stasielak, O. Sushchov) et al.,
    Cosmic rays and the structure of the universe studied in Cosmic Ray Extremely Distributed Observatory with citizen science,
    Proc. Science, ICRC2021 (2022) 1370, doi: 10.22323/1.395.1370,
    tekst pracy: https://pos.sissa.it/395/1370/pdf;
  26. CREDO Collab., Łu. Bibrzycki, (D.E. Alvarez-Castillo, D. Góra, P. Homola, J. Stasielak, S. Stuglik, O. Sushchov) et al.,
    Machine learning aided noise filtration and signal classification for CREDO experiment,
    Proc. Science, ICRC2021 (2022) 227, doi: 10.22323/1.395.0227,
    tekst pracy: https://pos.sissa.it/395/227/pdf;
  27. CREDO Collab., R. Clay, (O. Sushchov, Pi. Homola, D.E. Alvarez-Castillo, D. Góra, J. Miszczyk, V. Nazari, J. Stasielak, S. Stuglik) et al.,
    A search for bursts at 0.1 PeV with a small air shower array,
    Proc. Science, ICRC2021 (2022) 298, doi: 10.22323/1.395.0298,
    tekst pracy: https://pos.sissa.it/395/298/pdf;
  28. CREDO Collab., M. Karbowiak, (J. Stasielak, S. Stuglik, O. Sushchov) et al.,
    Small shower array for education purposes - the CREDO-Maze Project,
    Proc. Science, ICRC2021 (2022) 219, doi: 10.22323/1.395.0219,
    tekst pracy: https://pos.sissa.it/395/219/pdf;
  29. CREDO Collab., O. Sushchov, (P. Homola, D.E. Alvarez-Castillo, D. Góra, J. Miszczyk, V. Nazari, J. Stasielak, S. Stuglik) et al.,
    On the possible method of identification of two probably cognate extensive air showers,
    Proc. Science, ICRC2021 (2022) 424, doi: 10.22323/1.395.0424,
    tekst pracy: https://pos.sissa.it/395/424/pdf;
  30. CREDO Collab., O. Sushchov, (P. Homola, D.E. Alvarez-Castillo, D. Góra, J. Miszczyk, V. Nazari, J. Stasielak, S. Stuglik) et al.,
    Formation and propagation of cosmic-ray ensembles,
    Proc. Science, ICRC2021 (2022) 465, doi: 10.22323/1.395.0465,
    tekst pracy: https://pos.sissa.it/395/465/pdf;
  31. CREDO Collab., A. Tursunov, (D.E. Alvarez-Castillo, P. Homola, J. Stasielak, O. Sushchov) et al.,
    Acceleration of ultra-high-energy cosmic rays by local supermassive black hole candidates,
    Proc. Science, ICRC2021 (2022) 471, doi: 10.22323/1.395.0471,
    tekst pracy: https://pos.sissa.it/395/471/pdf;
  32. CREDO Collab., T. Wibig, (D. Alvarez-Castillo, D. Góra, P. Homola, J. Stasielak, S. Stuglik, O. Sushchov) et al.,
    Determination of Zenith Angle Dependence of Incoherent Cosmic Ray Muon Flux Using Smartphones of the CREDO Project,
    Proc. Science, ICRC2021 (2022) 199, doi: 10.22323/1.395.0199,
    tekst pracy: https://pos.sissa.it/395/199/pdf;
  33. R.M. de Almeida, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Large-scale and multipolar anisotropies of cosmic rays detected at the Pierre Auger Observatory with energies above 4 EeV,
    Proc. Science, ICRC2021 (2022) 335, doi: 10.22323/1.395.0335,
    tekst pracy: https://pos.sissa.it/395/335/pdf;
  34. A. di Matteo, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    UHECR arrival directions in the latest data from the original Auger and TA surface detectors and nearby galaxies,
    Proc. Science, ICRC2021 (2022) 308, doi: 10.22323/1.395.0308,
    tekst pracy: https://pos.sissa.it/395/308/pdf;
  35. DUNE Collab., A. Abed Abud, (T. Wąchała) et al.,
    Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC,
    J. Instr., 17 (2022) P01005, doi: 10.1088/1748-0221/17/01/P01005,
    tekst pracy: https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01005/meta;
  36. T. Fodran, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    First results from the AugerPrime Radio Detector,
    Proc. Science, ICRC2021 (2022) 270, doi: 10.22323/1.395.0270,
    tekst pracy: https://pos.sissa.it/395/270/pdf;
  37. J. Glombitza, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Event-by-event reconstruction of the shower maximum Xmax with the Surface Detector of the Pierre Auger Observatory using deep learning,
    Proc. Science, ICRC2021 (2022) 359, doi: 10.22323/1.395.0359,
    tekst pracy: https://pos.sissa.it/395/359/pdf;
  38. D. Góra, N. Borodai, R. Engel, T. Pierog, J. Pękala, M. Roth, J. Stasielak, M. Unger, D. Veberic, He. Wilczyński,
    Muon number rescaling in simulations of air showers,
    Proc. Science, ICRC2021 (2022) 207, doi: 10.22323/1.395.0207,
    tekst pracy: https://pos.sissa.it/395/207/;
  39. E. Guido, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Combined fit of the energy spectrum and mass composition across the ankle with the data measured at the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 311, doi: 10.22323/1.395.0311,
    tekst pracy: https://pos.sissa.it/395/311/pdf;
  40. P. Homola, (D.E. Alvarez-Castillo, K. Almeida Cheminant, D. Góra, J. Miszczyk, V. Nazari, J. Stasielak, S. Stuglik, O. Sushchov, K. Woźniak) et al.,
    Invitation to the Cosmic Ray Extremely Distributed Observatory,
    Proc. Science, ICRC2021 (2022) 942, doi: 10.22323/1.395.0942,
    tekst pracy: https://pos.sissa.it/395/942/pdf;
  41. A.G. Markowitz, (G. Bhatta) et al.,
    Rapid X-ray variability in Mkn 421 during a multiwavelength campaign,
    Mon. Not. R. Astron. Soc., 513 (2022) 1662-1679, doi: 10.1093/mnras/stac917,
    tekst pracy: https://academic.oup.com/mnras/article/513/2/1662/6564721;
  42. G. Marsella, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    AugerPrime Upgraded Electronics,
    Proc. Science, ICRC2021 (2022) 230, doi: 10.22323/1.395.0230,
    tekst pracy: https://pos.sissa.it/395/230/pdf;
  43. M. Mastrodicasa, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 1140, doi: 10.22323/1.395.1140,
    tekst pracy: https://pos.sissa.it/395/1140/pdf;
  44. E. Mayotte, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Indication of a mass-dependent anisotropy above 1018.7eV in the hybrid data of the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 321, doi: 10.22323/1.395.0321,
    tekst pracy: https://pos.sissa.it/395/321/pdf;
  45. M. Mohorian, G. Bhatta, T.P. Adhikari, Ni. Dhital, R. Pánis, A. Dinesh, S.C. Chaudhary, R.K. Bachchan, Z. Stuchlík,
    X-ray timing and spectral variability properties of blazars S5 0716+714, OJ 287, Mrk 501, and RBS 2070,
    Mon. Not. R. Astron. Soc., 510 (2022) 5280-5301, doi: 10.1093/mnras/stab3738,
    tekst pracy: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stab3738/6481631;
  46. L. Nellen, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Update of the Offline Framework for AugerPrime,
    Proc. Science, ICRC2021 (2022) 250, doi: 10.22323/1.395.0250,
    tekst pracy: https://pos.sissa.it/395/250/pdf;
  47. V. Novotný, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Energy spectrum of cosmic rays measured using the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 324, doi: 10.22323/1.395.0324,
    tekst pracy: https://pos.sissa.it/395/324/pdf;
  48. Pierre Auger Collab., P. Abreu, (K. Almeida Cheminant, G. Bhatta, N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory,
    J. Cosmol. Astropart. Phys., 01 (2022) 023, doi: 10.1088/1475-7516/2022/01/023,
    tekst pracy: https://iopscience.iop.org/article/10.1088/1475-7516/2022/01/023;
  49. B. Pont, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    The depth of the shower maximum of air showers measured with AERA,
    Proc. Science, ICRC2021 (2022) 387, doi: 10.22323/1.395.0387,
    tekst pracy: https://pos.sissa.it/395/387/pdf;
  50. A. Puyleart, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Satellite Data for Atmospheric Monitoring at the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 235, doi: 10.22323/1.395.0235,
    tekst pracy: https://pos.sissa.it/395/235;
  51. P. Ruehl, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Follow-up Search for UHE Photons from Gravitational Wave Sources with the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 973, doi: 10.22323/1.395.0973,
    tekst pracy: https://pos.sissa.it/395/973/pdf;
  52. E. Santos, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Monte Carlo simulations for the Pierre Auger Observatory using the VO auger grid resources,
    Proc. Science, ICRC2021 (2022) 232, doi: 10.22323/1.395.0232,
    tekst pracy: https://pos.sissa.it/395/232/pdf;
  53. P. Savina, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower universality,
    Proc. Science, ICRC2021 (2022) 373, doi: 10.22323/1.395.0373,
    tekst pracy: https://pos.sissa.it/395/373/pdf;
  54. C.M. Schäfer, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    The XY Scanner - A Versatile Method of the Absolute End-to-End Calibration of Fluorescence Detectors,
    Proc. Science, ICRC2021 (2022) 220, doi: 10.22323/1.395.0220,
    tekst pracy: https://pos.sissa.it/395/220/pdf;
  55. V. Scherini, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    The 2021 Open-Data release by the Pierre Auger Collaboration,
    Proc. Science, ICRC2021 (2022) 1386, doi: 10.22323/1.395.1386,
    tekst pracy: https://pos.sissa.it/395/1386/pdf;
  56. M. Schimp, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Combined Search for UHE Neutrinos from Binary Black Hole Mergers with the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 968, doi: 10.22323/1.395.0968,
    tekst pracy: https://pos.sissa.it/395/968/pdf;
  57. F. Schlüter, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Expected performance of the AugerPrime Radio Detector,
    Proc. Science, ICRC2021 (2022) 262, doi: 10.22323/1.395.0262,
    tekst pracy: https://pos.sissa.it/395/262/pdf;
  58. D. Schmidt, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Reconstruction of Events Recorded with the Water-Cherenkov and Scintillator Surface Detectors of the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 218, doi: 10.22323/1.395.0218,
    tekst pracy: https://pos.sissa.it/395/218/pdf;
  59. G. Silli, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Performance of the 433 m surface array of the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 224, doi: 10.22323/1.395.0224,
    tekst pracy: https://pos.sissa.it/395/224/pdf;
  60. J. Stasielak for the Pierre Auger Collaborration,
    AugerPrime - The upgrade of the Pierre Auger Observatory,
    Int. J. Mod. Phys. A, 37 (2022) 2240012, doi: 10.1142/S0217751X22400127,
    tekst pracy: https://www.worldscientific.com/doi/10.1142/S0217751X22400127;
  61. O. Sushchov, (P. Homola, D.E. Alvarez-Castillo, D. Góra, J. Miszczyk, V. Nazari, J. Stasielak, S. Stuglik) et al.,
    Simulations of Cosmic Ray Ensembles originated nearby the Sun,
    Proc. Science, ICRC2021 (2022) 457, doi: 10.22323/1.395.0457,
    tekst pracy: https://pos.sissa.it/395/457/pdf;
  62. P. Tinyakov, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    The UHECR dipole and quadrupole in the latest data from the original Auger and TA surface detectors,
    Proc. Science, ICRC2021 (2022) 375, doi: 10.22323/1.395.0375,
    tekst pracy: https://pos.sissa.it/395/375/pdf;
  63. C. Trimarelli, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Constraining Lorentz Invariance Violation using the muon content of extensive air showers measured at the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 340, doi: 10.22323/1.395.0340,
    tekst pracy: https://pos.sissa.it/395/340/pdf;
  64. A. Vásquez Ramírez, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Study on multi-ELVES in the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 327, doi: 10.22323/1.395.0327,
    tekst pracy: https://pos.sissa.it/395/327/pdf;
  65. J. Vicha, (N. Borodai, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Adjustments to Model Predictions of Depth of Shower Maximum and Signals at Ground Level using Hybrid Events of the Pierre Auger Observatory,
    Proc. Science, ICRC2021 (2022) 310, doi: 10.22323/1.395.0310 ,
    tekst pracy: https://pos.sissa.it/395/310/pdf;

Wróć

Rozprawa habilitacyjna

  1. T. Wąchała,
    Neutrino-Nucleus Cross-Section Measurements in the Near Detector of the T2K Experiment,
    (IFJ PAN) ISBN: 978-83-63542-25-2 (print), ISBN: 978-83-63542-26-9 (pdf), (2022) 1-185, doi: 10.48733/978-83-63542-26-9,
    tekst pracy: https://rifj.ifj.edu.pl/handle/item/354;
    Open access: PUBLISHER_WEBSITE;

Wróć

Na stronie
Lata publikacji