[Back to main page]

Publications NZ15 (Years: 2020 - now)

Updated: 2020-10-14

Publication

  1. B. Ali-Mohammadzadeh, (M. Babicz) et al.,
    Measurement of liquid argon scintillation light properties by means of an alpha source placed inside the CERN 10-PMT LAr detection system,
    J. Instr., 15 (2020) C06042, doi: 10.1088/1748-0221/15/06/C06042,
    tekst pracy: https://arxiv.org/pdf/2004.09231.pdf;
    Open access: OPEN_REPOSITORY;
  2. K. Almeida Cheminant, (D. Góra, D.E. Alvarez-Castillo, N. Dhital, P. Homola, K. Kopański, V. Nazari, J. Stasielak, O. Sushchov) et al.,
    Search for ultra-high energy photons through preshower effect with gamma-ray telescopes: Study of CTA-North efficiency,
    Astropart. Phys., 123 (2020) 102489, doi: 10.1016/j.astropartphys.2020.102489,
    tekst pracy: https://www.sciencedirect.com/science/article/pii/S092765052030061X?via%3Dihub;
  3. K. Almeida Cheminant, (D. Góra, N. Dhital, P. Homola, P. Jagoda, K. Kopański, V. Nazari, K. Smelcerz, J. Stasielak, O. Sushchov) et al.,
    Search for ultra-high energy photons: observing the preshower effect with gamma-ray telescopes,
    Proc. Science, (2020) in print,
    tekst pracy: https://pos.sissa.it/358/688/pdf; astro-ph.IM/1908.08805;
    Open access: OPEN_REPOSITORY;
  4. D. Alvarez-Castillo, A. Ayriyan, G.G. Barnaföldi, P. Pósfay,
    Studying the Landau Mass Parameter of the Extended σ–ω Model for Neutron Star Matter,
    Phys. Part. Nuclei, 51 (2020) 725-729, doi: 10.1134/S1063779620040073,
    tekst pracy: https://arxiv.org/pdf/2004.04210.pdf;
    Open access: OPEN_REPOSITORY;
  5. D. Attié, (M. Batkiewicz-Kwaśniak, A. Dąbrowska, J. Michałowski, H. Przybilski, J. Świerblewski, T. Wąchała, A. Zalewska) et al.,
    Performances of a resistive Micromegas module for the Time Projection Chambers of the T2K Near Detector upgrade,
    Nucl. Instr. Meth. A, 957 (2020) 163286, doi: 10.1016/j.nima.2019.163286,
    tekst pracy: https://arxiv.org/pdf/1907.07060.pdf;
    Open access: OPEN_REPOSITORY;
  6. M. Babicz et al.,
    Propagation of scintillation light in Liquid Argon,
    J. Instr., 15 (2020) C03035, doi: 10.1088/1748-0221/15/03/C03035,
    tekst pracy: https://iopscience.iop.org/article/10.1088/1748-0221/15/03/C03035;
  7. M. Babicz et al.,
    A measurement of the group velocity of scintillation light in liquid argon,
    J. Instr., 15 (2020) P09009, doi: 10.1088/1748-0221/15/09/P09009,
    tekst pracy: https://iopscience.iop.org/article/10.1088/1748-0221/15/09/P09009/pdf;
    Open access: OPEN_ARTICLE;
  8. M. Babicz et al.,
    A particle detector that exploits Liquid Argon scintillation light,
    Nucl. Instr. Meth. A, 958 (2020) 162421, doi: 10.1016/j.nima.2019.162421,
    tekst pracy: https://www.sciencedirect.com/science/article/pii/S016890021930991X?via%3Dihub;
  9. G. Bhatta, N. Dhital,
    The Nature of γ-Ray Variability in Blazars,
    Astrophys. J., 891 (2020) 120, doi: 10.3847/1538-4357/ab7455,
    tekst pracy: https://arxiv.org/pdf/1911.08198.pdf;
    Open access: OPEN_REPOSITORY;
  10. D. Blaschke, D. Alvarez-Castillo,
    A mixing interpolation method to mimic pasta phases in compact star matter,
    Eur. Phys. J. A, 56 (2020) 124, doi: 10.1140/epja/s10050-020-00111-1,
    tekst pracy: https://link.springer.com/content/pdf/10.1140/epja/s10050-020-00111-1.pdf;
    Open access: OPEN_ARTICLE;
  11. D. Blaschke, A. Ayriyan, D.E. Alvarez-Castillo, H. Grigorian,
    Was GW170817 a Canonical Neutron Star Merger? Bayesian Analysis with a Third Family of Compact Stars,
    Universe, 6 (2020) 81, doi: 10.3390/universe6060081,
    tekst pracy: https://www.mdpi.com/2218-1997/6/6/81;
    Open access: OPEN_JOURNAL;
  12. N. Dhital, O. Sushchov, J. Pękala, K. Almeida Cheminant, D. Góra, P. Homola for the CREDO Collab.,
    Cosmic ray ensembles from ultra-high energy photons propagating in the galactic and intergalactic space,
    Proc. Science, (2020) in print,
    tekst pracy: https://pos.sissa.it/358/239/pdf;
  13. DUNE Collab., B. Abi, (T. Wąchała) et al.,
    Volume I. Introduction to DUNE,
    J. Instr., 15 (2020) T08008, doi: 10.1088/1748-0221/15/08/T08008,
    tekst pracy: https://iopscience.iop.org/article/10.1088/1748-0221/15/08/T08008/pdf;
    Open access: OPEN_ARTICLE;
  14. DUNE Collab., B. Abi, (T. Wąchała) et al.,
    Volume III. DUNE far detector technical coordination,
    J. Instr., 15 (2020) T08009, doi: 10.1088/1748-0221/15/08/T08009,
    tekst pracy: https://iopscience.iop.org/article/10.1088/1748-0221/15/08/T08009/pdf;
    Open access: OPEN_ARTICLE;
  15. DUNE Collab., B. Abi, (T. Wąchała) et al.,
    Volume IV. The DUNE far detector single-phase technology,
    J. Instr., 15 (2020) T08010, doi: 10.1088/1748-0221/15/08/T08010,
    tekst pracy: https://iopscience.iop.org/article/10.1088/1748-0221/15/08/T08010/pdf;
    Open access: OPEN_ARTICLE;
  16. D. Góra, (K. Almeida Cheminant, N. Dhital, P. Homola, V. Nazari, K. Smelcerz, J. Stasielak, O. Sushchov, K.W. Woźniak) et al.,
    Cosmic Ray Extremely Distributed Observatory: Status and Perspectives of a Global Cosmic Ray Detection Framework,
    Proc. Science, (2020) in print,
    tekst pracy: https://pos.sissa.it/358/272/pdf;
    Open access: OPEN_JOURNAL;
  17. P. Homola for the CREDO Collab.,
    Public engagement as a scientific tool to implement multi-messenger strategies with the Cosmic-Ray Extremely Distributed Observatory,
    Proc. Science, Asterics2019 (2020) 034, doi: 10.22323/1.357.0034,
    tekst pracy: https://pos.sissa.it/357/034/pdf;
    Open access: OPEN_JOURNAL;
  18. ICARUS Collab., M. Antonello, (K. Cieślik, A. Dąbrowska, M. Harańczyk, M. Szarska, A. Zalewska) et al.,
    Study of space charge in the ICARUS T600 detector,
    J. Instr., 15 (2020) P07001, doi: 10.1088/1748-0221/15/07/P07001,
    tekst pracy: https://iopscience.iop.org/article/10.1088/1748-0221/15/07/P07001/pdf;
    Open access: OPEN_ARTICLE;
  19. M. Karbowiak, T. Wibig, D. Alvarez-Castillo, D. Beznosko, A.R. Duffy, D. Góra, P. Homola, M. Kasztelan, M. Niedźwiecki,
    The first CREDO registration of extensive air shower,
    Phys. Educ., 55 (2020) 055021, doi: 10.1088/1361-6552/ab9dbc,
    tekst pracy: https://iopscience.iop.org/article/10.1088/1361-6552/ab9dbc;
  20. LArIAT Collab., W. Foreman, (P. Kryczyński) et al.,
    Calorimetry for low-energy electrons using charge and light in liquid argon,
    Phys. Rev. D, 101 (2020) 012010, doi: 10.1103/PhysRevD.101.012010,
    tekst pracy: https://arxiv.org/pdf/1909.07920.pdf;
    Open access: OPEN_REPOSITORY;
  21. M. Mallamaci, D. Góra, E. Bernardini for the MAGIC Collab.,
    MAGIC as a high-energy ντ detector: performance study to follow-up IceCube transient events,
    Proc. Science, (2020) in print,
    tekst pracy: https://pos.sissa.it/358/953/pdf;
    Open access: OPEN_JOURNAL;
  22. M. Niedźwiecki, (P. Homola, K. Smelcerz, V. Nazari, D. Góra, K. Kopański, J. Stasielak) et al.,
    Recognition and classification of the cosmic-ray events in images captured by CMOS/CCD cameras,
    Proc. Science, (2020) in print,
    tekst pracy: https://pos.sissa.it/358/367/pdf;
    Open access: OPEN_JOURNAL;
  23. J. Pękala for the Pierre Auger Collab.,
    Production and Quality Control of the Scintillator Surface Detector for the AugerPrime Upgrade of the Pierre Auger Observatory,
    Proc. Science, (2020) in print,
    tekst pracy: https://pos.sissa.it/358/380/pdf;
  24. Pierre Auger Collab., A. Aab, (N. Borodai, N. Dhital, D. Góra, P. Homola, J. Pękala, C. Porowski, J. Stasielak, H. Wilczyński) et al.,
    A 3‐Year Sample of Almost 1,600 Elves Recorded Above South America by the Pierre Auger Cosmic‐Ray Observatory,
    Earth Space Sci., 7 (2020) EA000582, doi: 10.1029/2019EA000582,
    tekst pracy: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019EA000582;
    Open access: OPEN_JOURNAL;
  25. Pierre Auger Collab., A. Aab, (N. Borodai, N. Dhital, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Cosmic-Ray Anisotropies in Right Ascension Measured by the Pierre Auger Observatory,
    Astrophys. J., 891 (2020) 142, doi: 10.3847/1538-4357/ab7236,
    tekst pracy: https://arxiv.org/pdf/2002.06172.pdf;
    Open access: OPEN_REPOSITORY;
  26. Pierre Auger Collab., A. Aab, (N. Borodai, N. Dhital, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Direct measurement of the muonic content of extensive air showers between 2x1017 and 2x1018 eV at the Pierre Auger Observatory,
    Eur. Phys. J. C, 80 (2020) 751, doi: 10.1140/epjc/s10052-020-8055-y,
    tekst pracy: https://link.springer.com/content/pdf/10.1140/epjc/s10052-020-8055-y.pdf;
    Open access: OPEN_JOURNAL;
  27. Pierre Auger Collab., A. Aab, (N. Borodai, N. Dhital, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Search for magnetically-induced signatures in the arrival directions of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory,
    J. Cosmol. Astropart. Phys., 06 (2020) 017, doi: 10.1088/1475-7516/2020/06/017,
    tekst pracy: https://arxiv.org/pdf/2004.10591.pdf;
    Open access: OPEN_REPOSITORY;
  28. Pierre Auger Collab., A. Aab, (N. Borodai, N. Dhital, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscope,
    J. Instr., 15 (2020) P09002, doi: 10.1088/1748-0221/15/09/P09002,
    tekst pracy: https://arxiv.org/pdf/2007.04139.pdf;
    Open access: OPEN_REPOSITORY;
  29. Pierre Auger Collab., A. Aab, (N. Borodai, N. Dhital, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Measurement of the cosmic-ray energy spectrum above 2.5x1018  eV using the Pierre Auger Observatory,
    Phys. Rev. D, 102 (2020) 062005, doi: 10.1103/PhysRevD.102.062005,
    tekst pracy: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.102.062005;
    Open access: OPEN_ARTICLE;
  30. Pierre Auger Collab., A. Aab, (N. Borodai, N. Dhital, D. Góra, J. Pękala, J. Stasielak, H. Wilczyński) et al.,
    Features of the Energy Spectrum of Cosmic Rays above 2.5x1018  eV Using the Pierre Auger Observatory,
    Phys. Rev. Lett., 125 (2020) 121106, doi: 10.1103/PhysRevLett.125.121106,
    tekst pracy: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.125.121106;
    Open access: OPEN_ARTICLE;
  31. Ka. Smelcerz, K. Kopański, Wo. Noga, M. Sułek, K. Almeida Cheminant,
    A communication solution for portable detectors of the "Cosmic Ray Extremely Distributed Observatory",
    Proc. Science, (2020) in print,
    tekst pracy: https://pos.sissa.it/358/428/pdf;
    Open access: OPEN_JOURNAL;
  32. T2K Collab., K. Abe, (M. Batkiewicz-Kwaśniak, A. Dąbrowska, T. Wąchała, A. Zalewska) et al.,
    Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations,
    Nature, 580 (2020) 339-344, doi: 10.1038/s41586-020-2177-0,
    tekst pracy: https://arxiv.org/pdf/1910.03887.pdf; hep-ex/1910.03887; Publisher Correction: Nature 583(2020)E16;
    Open access: OPEN_REPOSITORY;
  33. T2K Collab., K. Abe, (M. Batkiewicz-Kwaśniak, A. Dąbrowska, T. Wąchała, A. Zalewska) et al.,
    Measurement of the muon neutrino charged-current single π+ production on hydrocarbon using the T2K off-axis near detector ND280,
    Phys. Rev. D, 101 (2020) 012007, doi: 10.1103/PhysRevD.101.012007,
    tekst pracy: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.101.012007;
    Open access: OPEN_ARTICLE;
  34. T2K Collab., K. Abe, (M. Batkiewicz-Kwaśniak, A. Dąbrowska, T. Wąchała, A. Zalewska) et al.,
    First combined measurement of the muon neutrino and antineutrino charged-current cross section without pions in the final state at T2K,
    Phys. Rev. D, 101 (2020) 112001, doi: 10.1103/PhysRevD.101.112001,
    tekst pracy: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.101.112001;
    Open access: OPEN_ARTICLE;
  35. T2K Collab., K. Abe, (M. Batkiewicz-Kwaśniak, A. Dąbrowska, T. Wąchała, A. Zalewska) et al.,
    Simultaneous measurement of the muon neutrino charged-current cross section on oxygen and carbon without pions in the final state at T2K,
    Phys. Rev. D, 101 (2020) 112004, doi: 10.1103/PhysRevD.101.112004,
    tekst pracy: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.101.112004;
    Open access: OPEN_ARTICLE;
  36. T2K Collab., K. Abe, (M. Batkiewicz-Kwaśniak, A. Dąbrowska, T. Wąchała, A. Zalewska) et al.,
    First measurement of the charged current νμ double differential cross section on a water target without pions in the final state,
    Phys. Rev. D, 102 (2020) 012007, doi: 10.1103/PhysRevD.102.012007,
    tekst pracy: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.102.012007; hep-ex/1908.10249;
    Open access: OPEN_ARTICLE;
  37. T2K Collab., K. Abe, (M. Batkiewicz-Kwaśniak, A. Dąbrowska, T. Wąchała, A. Zalewska) et al.,
    Search for Electron Antineutrino Appearance in a Long-Baseline Muon Antineutrino Beam,
    Phys. Rev. Lett., 124 (2020) 161802, doi: 10.1103/PhysRevLett.124.161802,
    tekst pracy: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.124.161802;
    Open access: OPEN_ARTICLE;

Back

On This Page
Years of publication