Polski [Back to main page]

Experiment P-ONE

Updated: 2022-09-29

Introduction

Our knowledge about the World is still very limited, despite a long era of research in many fields. The theory of elementary constituents of the Universe - the Standard Model of elementary particles, despite its mathematical beauty and very precise description of a huge variety of phenomena, still fails to describe the mysteries of Dark Matter, Dark Energy and many others. Astrophysics keeps trying to examine the nature of the sources of very-high energy cosmic rays. Seeking answers to fundamental questions is possible in many ways: by observing the sky through more and more sophisticated telescopes, by performing experiments at particle accelerators, but also - by exploiting the gifts of Nature and instrumenting them with particle detectors.

Neutrino telescopes are experimental systems placed deep in transparent natural media in various geographical areas of the Earth. They are aimed at investigating a wide spectrum of scientific problems and primarily the natural neutrino fluxes. The deep underwater detection method provides a basis for experiments to record high- and possibly ultra-high-energy astrophysical neutrinos with neutrino telescopes. The detection principle is based on recording Cherenkov radiation from secondary muons or high-energy showers produced by the interaction of neutrinos with matter in transparent natural media.

About the project

The Pacific Ocean Neutrino Experiment (P-ONE) is currently under construction in the North-East Pacific, next to Canada shores. It is aimed primarily at studying astrophysical neutrino fluxes, will utilize the water of the Pacific Ocean, instrumented at depth with Optical Modules that detect the Cherenkov radiation from secondary particles produced in interactions of high-energy neutrinos inside or near the instrumented volume. The optical sensors will be organized in so-called clusters. By design, the P-ONE telescope is searching for neutrinos going upwards (traversing the Earth and interacting with the bedrock of the Ocean or its water) with energies between 100 TeV and 10 PeV. The Experiment is currently in the construction phase, two pathfinder lines are in operation since 2018 and the first regular measurement line will be deployed in 2024.

Research goals

The aim of the research conducted by P-ONE is the search for very-high-energy neutrinos of astrophysical origin. Measurement of their diffuse flux' characteristics will allow to confirm the findings of the IceCube experiment in the Antarctic. Moreover, P-ONE will search for sources of such neutrinos. Thanks to its location in the Northern Hemisphere, P-ONE is observing the southern sky, including the Galactic Centre, where such sources may be located.

IFJ contribution

The work in the INP are a continuation of the previous experience In the Baikal-GVD collaboration. The main directions of research include:
• construction of laser calibration system,
• development of simulation software (fast simulation of photon propagation through water),
• analyses of first data from the pathfinder lines