Updated: 2022-04-19
For political reasons, the collaboration was cancelled.
The Baikal-GVD (Gigaton Volume Detector) experiment is the largest
currently operational neutrino telescope in the northern
hemisphere and the largest deep underwater neutrino detector in
the world. Its main physics goal is the search for high-energy
neutrinos from astrophysical sources. The telescope is composed of
optical modules located at the depth of around 1 km in Lake
Baikal, Siberia.
The detection of neutrinos in water is based on the observation of
Cherenkov radiation induced in water by secondary particles
(mainly electrons and muons) produced in the interactions of
neutrinos with the bedrock or lake water. The telescope is
particularly sensitive to the up-going neutrinos (which travel
throughout the Earth) and is therefore observing the southern part
of the celestial sphere.
The deep-underwater neutrino detector, Baikal-GVD, is an
international project in the astroparticle physics and neutrino
astronomy. Its main goal is to examine the flux of the
very-high-energy neutrinos and to search for their sources. The
Baikal-GVD also searches for the candidates for dark-matter
particles, neutrinos from the decays of supermassive particles,
magnetic monopoles and other exotic phenomena. It can also be used
as a platform for environmental studies in the Baikal lake.
The preparatory phase of the project ended in 2015 with the
installation of a demonstration cluster containing 192 optical
modules. The first construction phase (GVD-I) had started in 2016
by the installation of the first cluster in the designed
configuration, consisting of 288 optical modules. The completion
of the first phase (8 clusters, 0.4 km3 of active
volume) is planned for 2021.
The Baikal-GVD telescope is located in the southern part of the
Baikal lake, 4 km from the shore station which hosts the detector
control system and data acquisition centre. That particular
location was selected due to the depth of the lake (1366 m) and
its flat bed, in addition to water transparency and the vicinity
of railway connection. A big advantage of the localization is the
possibility to deploy the detector elements from the lake's ice
cap in late winter.
The Baikal-GVD collaboration currently consists of 11 institutions
and organizations from 5 countries. The telescope is one of the
three largest neutrino telescopes in the world, alongside the Ice
Cube at the South Pole and KM3NET in the Mediterranean sea.
The main goal of the research conducted in the Baikal-GVD experiment is the thorough examination of the flux of high-energy astrophysical neutrinos and the search for their sources. The Baikal-GVD also searches for the candidate for dark matter particles, neutrinos from the decays of supermassive particles, magnetic monopoles and other phenomena. It can also serve as a platform for environmental studies of the Baikal lake.
The Baikal-GVD group at IFJ PAN takes an active role in the works of the Baikal Collaboration. Through participation of our representative in the annual winter expeditions to Lake Baikal, we take part in the detector deployment and its maintenance. In addition, we participate in the development of new telescope infrastructure. Moreover, development of the software dedicated to simulation of the detector response to the products of neutrino interactions with matter (muons, cascades of secondary particles) is performed at IFJ PAN, together with studies of event reconstruction (determination of neutrino direction and energy) and time calibration of the optical modules.