ey
ey

‘_3
4 “;

o

A% "“{:(t
L
Dl

stREet

Y
3o w

t
£

.

£

The number of muons in an air shower is a strong |nd|oator of the mass of the pnmary partlole and iIncreases W|th a smaII power of the cosmic ray mass by the B exponent N ~ AC ﬂ) ps

| hadronic air showers. In this paper, we present a method for calculating g from the Heitler-Matthews model. The method has been successfully verified with a series of S|mulated events observed by the Pierre Auger Observatory at 10" eV. To follow reaI i"
1 measurements of the mass composition at this energy, the generated sample consists of a certain fraction of events produced with p, He, N and Fe primary energies. Since hadronic interactions at the highest energies can differ from those observed at ¢
energies reached by terrestrial accelerators, we generate a mock data set with g = 0.92 (the canonical value) and § = 0.96 (a more exotic scenario). The method can be applied to measured events to determine the muon signal for each primary particle as well as |
scaling factor and the p-exponent. Determining the f-exponent can effectively constrain the parameters that govern hadronic interactions and help solve the so-called muon problem: hadronic interaction [

1 models predlot too few muons relative to observed events. In this paper, we Iay the foundation for the future anaIyS|s of measured data from the Plerre Auger Observatory W|th a S|mulat|on study =

o)
. PNIT n} Ty ~r. Lot n} M.r PTTT n} rv-.r PNITT n} Ty ~r. Lot n} M.r PTTT n} rv-.r PNITT n} Ty ~r. Lot n} e PTTT n} rv-.r NIT n} TV ~r. Lo n} M-r NI n} M-r NIT ﬂ} T "h b4 n} M-r PHITIE ﬂ} rv-.r T ﬂ} i "h T ﬂ? e NI f!} ""'*-f * T ﬂ} ’“-r "h T ﬂ? "‘"-f "7v T f!} ""'*-f T ﬂ} i "h T ﬂ? "‘"-f "7v T f!} ""'*-f "'N ﬂ} i "h T ﬂ? "‘"-f "7v T f!} ""'*-f T ﬂ} i "h T ﬂ? "‘"-f "7v T f!} ""'*-f "'N ﬂ} TV "h T ﬂ? "‘"-f "7v T f!} ""'*-f "'N ﬂ} ’“-r LA B b S Aeh s N TR b kel e Ny i
:v\ﬁl-—v- '(‘ Lt s v\\‘ Tl 4 vﬂl-—v- Tt i bt v\ﬁl-—v- '(‘ Lt v\\‘ Tl o M vﬂl-—v- Tt i bt v\ﬁl-—v- '(‘ it e v\\‘ Tl o Mtk e vﬂl-—v- eyt v\ﬁl-—v- '(‘ it e v\\‘ Th o bl vﬂl-—v- Tt i Mt v\ﬁl-—v- '(‘ it e v\\‘ Tl o M vﬂl-—v- Tt i Mt v\ﬁl-—v- '(‘ Mt s v\\‘ Tl o Mt e vﬂl-—v- Tl o Mt e ey ey p— --.1(-'——.<r.—w oy - -.‘J ety - -..1 ey Wer ey ey - -'J ety - ...1 1(-'——.<r.—w Wy -.‘.\ ey o'y i 1 ey Y s L r L e T -.‘.\ b ey 'y - -..1 Y '\ A L o B e Lt {

1) Introduction . 2) Two- _parameter nonlinear scallng model

¢ Simulations of extensive air showers using current hadronic interaction models predict too smali
a number of muons compared to observations by the air-shower experiments, which is known
as the muon deficit problem. \We mimic this effect by construction of mock dataset.

> Top Down simulation chain[1-4]: Conex/CORSIKA[6]/OFFLINE[7]
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For each observed hybrid shower, starting with a large number of simulated air showers with
varying initial conditions, we select the one which has a longitudinal profile most similar to the
profile of the observed shower (the reference profile). As a result of the simulation- Average logarithm of the muon signal for Epos-LHC [8] and QGSJetll-04 [9]. Solid lines are fits of
reconstruction chain we get an event, with complete information about the distributions of the the function’s ,;, = const A'# to the TD simulation. From the fit, we obtain g = 0.925 + 0.003 for
signals in the detectors (including information on the specific components that contribute to Epos-LHC (red line), and = 0.918 + 0.003 for QGSJetll-04 (blue line)

these signals) these S|gnals can then be oompared with their reference oounterparts
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— primary mass, index k={p. He, N, Fe}

kE —ApS
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< These two parameters indicate how much we need to scale the proton signal (¢, term) and by
how much to mdtﬁﬁfy the g-exponent (Af) in the Heitler-Matthews formula [5] in order to

match the observed numbers of muons in data and in simulations

Fe T T T T T T ——

zZp Entries 680

Entries 680 Mean ~0.2474 4 d t b t

- S Dev ) z .-distribution
Std Dev 4.452 %2/ ndf 25.02/18

X2 / ndf 14.79 /12 Constant 85.17 £ 4.46

Constant 81.17 + 4.10 '\S"igfn”a RPN ¢ Input dataset is constructed from Epos-LHC [8] simulations (mock dataset) and is built by taking
Mean 4.846 £ 0.175 BEER MC simulations from the TD simulation chain obtained with Epos-LHC around 108 eV. The

Sigma : + 0.

° e matched dataset is a dataset from QGSJetll-04 [9] simulations. The input dataset contains N events
and the events will be indexed asn =1, ..., N. The multiple longitudinal profile-matched MC events, simulated with
primary k, corresponding to an input event n are indexed withi =1, ..., M and are thus denoted with the triplet
subscript nki.
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Constant 47.57 + 2.55
Mean 2.825 £ 0.158
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We can define the measured observable:
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The signal at 1000 m

for the input dataset The signal at 1000 m
for the matched dataset
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The z, -distributions for stations at 1000 m from the shower core, from TD simulations at Energy 1079
eV for proton (left) and iron (right) induced air showers simulated with Epos-LHC and QGSJetll-04
for mock dataset, see Ref. [4] for more detalils.
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<* The mean signal (s)of the input/matched (S)dataset is the sum of the mean electromagnetic
(em) and muonic components

(S) = (S™%) + (%) (8) = (8"") +(8")

*» Since we assume a perfect matching of the longitudinal profile and thus the EM component
of the signal, all the (S°™)are very close or identical to the (S°™) signals in the corresponding
input events

AS = (S) — (§) = ka (St ) — <S§) = (SM) — (§") = ASH | 6) Results
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The composition fractions as measured
by the Pierre Auger Observatoty at this energy [11]
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helium The muon signal at 1000 m
nitrogen for the matched dataset [10]
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Figure 4: (Left): The results of fitting the function given by Eq. (12) to the normalized z,,; histogram shown
in Fig. 3 (mockdataset) with o (z;)/VEM = {4.11,3.40,4.02,3.91} and f; = {0.15,0.38,0.46,01} and
(§¥)./VEM = {15.57,17.25,19.37,21.61} and with the two-parameters exponential scaling model. The
four individual z;-distributions match the z,;-histogram for &, = 0.147 + 0.062, A = 0.003 £ 0.035 and
scaling parameter App = 0.945 + 0.038. (Right): The four individual z;-distributions match z,;-histogram
for mockdataset with 8 = 0.96 and for £, = 0.118 £ 0.043, AB = 0.040 + 0.023 and A, = 0.983 + 0.039.
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p 1.16£0.06 1557+0.17 18.03+0.18 42% 1.13+0.04 1752+0.17 1.0%

He 1.15£0.06 17.25+0.19 1990+0.20 43% 1.07+0.07 18.11+0.30 1.4%
N LI5£006 1937+020 2226+0.21 53% 1.01+009 1924+038 19%
Fe 1.14+x006 21.61+023 2473+024 5.6% 096+0.10 20.23+0.25 24%
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¢ Above formula tells us by how much each z, -distribution must be shifted, rescaled, and then
weighted and summed, in order to retrieve the z,; -distribution and also its first and second moments
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Table 1: Values of the muon rescaling factors obtained with the fitting procedure, and of the MC muon signal,
the reconstructed muon signals, for all primaries considered and with f, = 0.15, fy. = 0.38, fy = 0.46, and
fre = 0.01. The overestimation & = ({S}5) - (S““""))/(S"“’"‘) of the reconstructed muon signal compared
to the one from the mock dataset is also provxded. The errors shown in the four column are the square root
of the sum of the squares of the errors ory x and 6 (5[}""}(), 1.e. those listed in the second and third columns,

7) S umma I'y respectively. The last free columns show results for mockdataset with g = 0.96.
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*» The method presented in this work recovers the mean muon signal and provides the ability to
calculate muon signals for each element in the considered sample of real-like events.
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» In this work,we performed calculations of muon scaling factors and f exponents, by fitting
a four-element Gaussian distribution to the overall z-histogram, with two-parameter scaling model
which should follow Heitler-Matthews progression.
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> This work shows that the z-method can be applied to hybrid events to determine the muon signal,
the scaling factor (total and for each element), and the 8 exponent.
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